CA-duality - определение. Что такое CA-duality
DICLIB.COM
Языковые инструменты на ИИ
Введите слово или словосочетание на любом языке 👆
Язык:     

Перевод и анализ слов искусственным интеллектом

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое CA-duality - определение


CA-duality         
THEORY IN QUANTUM PHYSICS
Draft:CA-duality; Complexity equals action duality
In quantum gravity and quantum complexity theory, the complexity equals action duality (CA-duality) is the conjecture that the gravitational action of any semiclassical state with an asymptotically anti-de Sitter background corresponds to quantum computational complexity, and that black holes produce complexity at the fastest possible rate. In technical terms, the complexity of a quantum state on a spacelike slice of the conformal field theory dual is proportional to the action of the Wheeler–DeWitt patch (WDW patch) of that spacelike slice in the bulk.
U-duality         
SYMMETRY OF M-THEORY COMPACTIFICATIONS THAT INCLUDES T-DUALITY AND S-DUALITY AS SUBGROUPS; THE SUPERGRAVITY THEORY U-DUALITY GROUP IS AN E-SERIES LIE GROUP, WHILE STRINGY EFFECTS BREAK IT TO A DISCRETE SUBGROUP
U-duality group
In physics, U-duality (short for unified duality)S. Mizoguchi, "On discrete U-duality in M-theory", 2000.
Matlis duality         
MATHEMATICAL THEOREM THAT, OVER A NOETHERIAN COMPLETE LOCAL RING, THE CATEGORIES OF NOETHERIAN AND ARTINIAN MODULES ARE ANTI-ISOMORPHIC
Matlis module; Macaulay duality
In algebra, Matlis duality is a duality between Artinian and Noetherian modules over a complete Noetherian local ring. In the special case when the local ring has a field mapping to the residue field it is closely related to earlier work by Francis Sowerby Macaulay on polynomial rings and is sometimes called Macaulay duality, and the general case was introduced by .